

Forschungsinstitut für biologischen Landbau FiBL info.suisse@fibl.org, www.fibl.org

How can large-scale conversion to organic agriculture contribute to sustainable food systems?

Adrian Muller (adrian.mueller@fibl.org)

Tech & Bio 2019, Conférence «Comment accompagner un dévelopement important de l'agriculture biologique et quelles en seraient les conséquences?»

September 18 2019, Valence, France

By embedding it in an encompassing foodsystems perspective and not only focusing on sustainable production.

Consumption and processing are central as well.

Land use

Land use

Muller et al. 2017; Courtesy: R. Zürcher

Scenarios; percentage shares in organic production (reference: 0% organic)

Scenarios; percentage shares in organic production (reference: 0% organic)

Are land use and yields an interesting topic? It relates to one sustainability indicator among many others.

How much do we need to produce?

- Over 9 Billion people in 2050
- FAO: over 3000 kcal/cap/day
- High shares of animal protein in diets

Once more: Land use

in ing feed						
iction mpet			% Or	ganic		
Redu od-co	0	20	40	60	80	100
ور % 0	0	5	10	17	25	33
50	-16	-12	-8	-4	2	8
100	-26	-24	-20	-16	-12	-8

> +5%
< +5% > _5%
<5%

Land use

> +5% < +5% > -5%

Land use

> +5%

< +5% > -5%

<--5%

Muller et al. 2017; Courtesy: R. Zürcher

tion	feed				Clin	nate c	hange	impac	t on y	ields									
educ	n in eting f			Ze	ero					Med	lium					Hi	gh		
age r	ductic			% O	rganic	;				% O	rganic	;				% O	rganio	;	
Wast	% Rec ood-c	0	20	40	60	80	100	0	20	40	60	80	100	0	20	40	60	80	100
%	0	0	5	10	17	25	33												
0	50	-16	-12	-8	-4	2	8												
	100	-26	-24	-20	-16	-12	-8												
	0	-6	-1	5	10	18	26	14	20	25	32	40	48	39	42	45	50	56	61
25	50	-22	-18	-13	-8	-4	-2	-4	0	5	9	14	21	18	20	22	25	27	32
	100	-30	-27	-25	-21	-17	-13	-14	-11	-8	-5	-1	4	6	7	8	8	10	13
	0																		
50	50																		
	100																		

tion	feed				Clin	nate c	hange	impac	t on y	ields										
reduc	on in eting			Ze	ero					Med	dium						Hi	gh		
age I	ductic			% O	rganio	;				% O	rganic	;					% O	rganic	;	
Wast	% Re	0	20	40	60	80	100	0	20	40	60	80	100)	20	40	60	80	100
%	0	0	5	10	17	25	33													
0	50	-16	-12	-8	-4	2	8													
	100	-26	-24	-20	-16	-12	-8													
	0	-6	-1	5	10	18	26	14	20	25	32	40	48	3	9	42	45	50	56	61
25	50	-22	-18	-13	-8	-4	-2	-4	0	5	9	14	21	1	8	20	22	25	27	32
	100	-30	-27	-25	-21	-17	-13	-14	-11	-8	-5	-1	4		6	7	8	8	10	13
	0																			
50	50											-1								
	100																			
	100																			

> +5%

< +5% > -5%

<--5%

Muller et al. 2017; Courtesy: R. Zürcher

tion	eed				Clin	nate c	hange	impac	t on y	ields										
educ	n in eting f			Ze	ero					Med	dium						Hi	gh		
age r	ductic			% O	rganic	;				% O	rganic	;					% O	rganio	;	
Wast	% Re ood-o	0	20	40	60	80	100	0	20	40	60	80	100	C	2	20	40	60	80	100
%	0	0	5	10	17	25	33	21	26	33	40	47	57	4	6	50	54	58		
0	50	-16	-12	-8	-4	2	8	2	7	10	16	22	27	2	5 2	26	29	32		
	100	-26	-24	-20	-16	-12	-8	-9	-6	-3	1	5	9	1	2	13	14	15		
	0	-6	-1	5	10	18	26	14	20	25	32	40	48	3		42	45	50		
25	50	-22	-18	-13	-8	-4	-2	-4	0	5	9	14	21	18	3	20	22	25		2
	100	-30	-27	-25	-21	-17	-13	-14	-11	-8	-5	-1	4	6		7	8	8	1	3
	0	-11	-7	-1	5	11	20	8	13	18	25	32	40	3		34	38	42	47	53
50	50	-25	-23	-19	-14	-9	-4	-9	-6	-2	3	8	14	1		12	15	17	21	25
	100	-35	-32	-29	-25	-22	-18	-19	-17	-13	-10	-7	-3	_	1	0	1	3	4	7

tion	eed	Г			Clin	nate c	hange	impac	t on y	ields										
educ	n in ting f			Ze	ero					Med	lium						Hi	gh		
/astage r	Reductio od-compe	0	20	% O 40	rganio 60	; 80	100	0	20	% O 40	rganic 60	; 80	100		0	20	% O 40	rganic 60	; 80	100
M %	60 % 0	0	5	10	17	25	33	21	26	33	40	47	57	2	16	50	54	58	64	71
0	50	-16	-12	-8	-4	2	8	2	7	10	16	22	27	2	25	26	29	32	35	40
	100	-26	-24	-20	-16	-12	-8	-9	-6	-3	1	5	9	1	12	13	14	15	17	20
	0	-6	-1	5	10	18	26	14	20	25	32	40	48	3	39	42	45	50	56	61
25	50	-22	-18	-13	-8	-4	-2	-4	0	5	9	14	21	1	8	20	22	25	27	32
	100	-30	-27	-25	-21	-17	-13	-14	-11	-8	-5	-1	4		6	7	8	8	10	13
	0	-11	-7	-1	5	11	20	8	13	18	25	32	40	3	30	34	38	42	47	53
50	50	-25	-23	-19	-14	-9	-4	_9	6											
	100	-35	-32	-29	-25	-22	-18	-19	-17	-13	-10	-7	-3							

Land use

tion	eed				Clin	nate c	hange	impac	t on y	ields									
educ	n in eting f			Ze	ero					Mec	lium					Hi	gh		
age r	ductio compe			% O	rganic	;				% O	rganic	;				% O	rganic	:	
Vast	6 Rec	0	20	40	60	80	100	0	20	40	60	80	100	0	20	40	60	80	100
/ %	0	0	5	10	17	25	33	21	26	33	40	47	57	46	50	54	58	64	71
0	50	-16	-12	-8	-4	2	8	2	7	10	16	22	27	25	26	29	32	35	40
	100	-26	-24	-20	-16	-12	-8	-9	-6	-3	1	5	9	12	13	14	15	17	20
	0	-6	-1	5	10	18	26	14	20	25	32	40	48	39	42	45	50	56	61
25	50	-22	-18	-13	-8	-4	-2	-4	0	5	9	14	21	18	20	22	25	27	32
	100	-30	-27	-25	-21	-17	-13	-14	-11	-8	-5	-1	4	6	7	8	8	10	13
	0	-11	-7	-1	5	11	20	8	13	18	25	32	40	30	34	38	42	47	53
50	50	-25	-23	-19	-14	-9	-4	-9	-6	-2	3	8	14	10	12	15	17	21	25
	100	-35	-32	-29	-25	-22	-18	-19	-17	-13	-10	-7	-3	-1	0	1	3	4	7

> +5% < +5% > -5% <--5%

Nutrient supply

Not only the products but also the fertilizers are grown on the areas

Adequate nitrogen supply could become a challenge

N surplus

uo	ed				Clim	ate ch	nan	ge i	mpa	act c	on yi	elds										
ducti	i in ing fe			Ze	ero							Med	lium						Hi	gh		
stage re	Reduction d-compet	0	20	% O 40	rganio 60	80	10	00	0)	20	% O 40	rganio 60	8	0 10	0	0	20	% O 40	rganio 60	80	100
% Wa	0 foo	25	21	15	10	4	-	3	2	3	19	14	8	3	3 -3	3	21	16	12	7	1	-4
0	50	20	16	12	7	2	-	4	1	8	14	10	6	1			17	13	9	4	0	-5
	100	15	11	7	3	-1		2	1	1	7	12	7		1	_	4	9	5	2	-2	-6
	0	23	19	14	8	2		1	7	1:	3	9	5		0	-	5	15	10	5	0	-5
25	50	18	14	10	6	1		1	2	ç	,	5	2	1	-2	_	6	11	7	3	-1	-5
	100	13	10	6	2	-2												8	4	1	-3	-6
	0	21	17	12				_	1	0	15	10	5	() –6	6	17	13	9	4	-1	-6
50	50	16	12	8													14	10	6	2	-2	-6
	100	11	8	5	-	-3	-	7	1	0	7	4	1	-	3 -7	7	10	7	3	0	-3	-7

Surplus

Optimal

Critical

Deficit

Muller et al. 2017; Courtesy: R. Zürcher

Again: land use and N-surplus

are only two sustainability indicators among many others

Ultimately, we are not interested in this dichotomy of conventional versus 100% organic.

We look for encompassing sustainable solutions.

tion	eed				Clim	nate c	hange	impac	t on y	ields									
aduc	n in ting f			Ze	ero					Med	dium					Hi	gh		
age r	ductio			% O	rganic	;				% O	rganio	;				% O	rganio	;	
Nast	6 Rec	0	20	40	60	80	100	0	20	40	60	80	100	0	20	40	60	80	100
/ %	0	0	5	10	17	25	33	21	26	33	40	47	57	46	50	54	58	64	71
0	50	-16	-12	-8	-4	2	8	2	7	10	16	22	27	25	26	29	32	35	40
	100	-26	-24	-20	-16	-12	-8	-9	-6	-3	1	5	9	12	13	14	15	17	20
	0	-6	-1	5	10	18	26	14	20	25	32	40	48	39	42	45	50	56	61
25	50	-22	-18	-13	-8	-4	-2	-4	0	5	9	14	21	18	20	22	25	27	32
	100	-30	-27	-25	-21	-17	-13	-14	-11	-8	-5	-1	4	6	7	8	8	10	13
	0	-11	-7	-1	5	11	20	8	13	18	25	32	40	30	34	38	42	47	53
50	50	-25	-23	-19	-14	-9	-4	-9	-6	-2	3	8	14	10	12	15	17	21	25
	100	-35	-32	-29	-25	-22	-18	-19	-17	Г			-3	-1	0	1	3	4	7
											3								

Б	e				Clim	ate ch	nange i	mpact	on yi	elds									
ductio	ing fe			Ze	ero					Med	lium					Hi	gh		
ge re	uction			% O	rganio	;				% O	rganic	;				% 0	rganic	;	
/asta	% Red ood-c	0	20	40	60	80	100	0	20	40	60	80	100	0	20	40	60	80	100
Μ %	0	25	21	15	10	4	-3	23	19	14	8	3	-3	21	16	12	7	1	-4
0	50	20	16	12	7	2	-4	18	14	10	6	1	-4	17	13	9	4	0	-5
	100	15	11	7	3	-1	-5	13	10	7	3	-1	-5	12	9	5	2	-2	-6
	0	23	19	14	8	2	-4	21	17	12	7	1	-4	19	15	10	5	0	-5
25	50	18	14	10	6	1	-5	17	13	9	5	0	-5	15	11	7	3	-1	-5
	100	13	10	6	2	-2	-6	12	9	5	2	-2	-6	11	8	4	1	-3	-6
	0	21	17	12	7	1	-5	19	15	10	5	0	-6	17	13	9	4	-1	-6
50	50	16	12	8	4	0	-6	15	11	7	3	-1	-6	14	10	6	2	-2	-6
	100	11	8	5	1	-3	-7	10	7	ſ	_	٦	-7	10	7	3	0	-3	-7
											3								

Some further thoughts

Effects on consumption

1%

How do we measure sustainability? per unit produce per area total aggregate

The IPCC 1.5-degree scenarios with bioenergy and carbon capture and storage (BECCS) – till 2050:

- Change 800 mio ha grassland to cropland for Miscanthus
- 2.5 times as much mineral N fertilizer as today

Conclusions I

- It is important to discuss how much we really need to produce:
 - Animal products / waste
- It is important how we measure sustainability:
 - Per kg, per ha or in total; not only GHG emissions...
 - Land use and yield gaps must not dominate the discussion
- Sustainable production cannot be discussed without addressing consumption and processing – i.e. without addressing the whole food system
 - Efficiency consistency sufficiency

Conclusions II

- It is important to discuss what «feeding the world» means:
 - Animal products / waste
- It is important how we measure sustainability:
 - Per kg or per ha; not only GHG emissions...
 - Land use and yield gaps must not dominate the discussion
- Sustainable production cannot be discussed without addressing consumption and processing i.e. without addressing the whole food system
 - Efficiency consistency sufficiency

• Organic agriculture is a role model, but it is no panacea

- Trade-offs and synergies
- 100% organic and "feeding the world" narratives are not the key aspects for discussions on sustainable agriculture and food systems

Conclusions III

- It is important to discuss what «feeding the world» means:
 - Animal products / waste
- It is important how we measure sustainability:
 - Per kg or per ha; not only GHG emissions...
 - Land use and yield gaps must not dominate the discussion
- Sustainable production cannot be discussed without addressing consumption and processing i.e. without addressing the whole food system
 - Efficiency consistency sufficiency
- Organic agriculture is a role model, but it is no panacea
 - Trade-offs and synergies
 - 100% organic and "feeding the world" narratives are not the key aspects for discussions on sustainable agriculture and food systems
- Keep an eye on the link to other sectors
 - e.g. the energy sector: Bioenergy
- Choose policy instruments wisely
 - be e.g. critical towards CO₂-certificates or also a carbon tax on meat
 - rather go for a tax on external N sources

Policy levers to drive sustainability in food systems

